Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae.
نویسندگان
چکیده
Stress tolerance of Saccharomyces cerevisiae was examined after exposure to heat and salt shock in the presence or absence of the protein synthesis inhibitor cycloheximide. Cells heat-shocked (37 degrees C for 45 min) in the absence of cycloheximide demonstrated increased tolerance of heat, freezing and salt stress. For cells heat-shocked in the presence of cycloheximide, heat and salt tolerance could still be induced, although at lower levels, while induction of freezing tolerance was completely inhibited. These results indicated that while heat shock proteins (hsps) may contribute to induced heat and salt tolerance they are not essential, although induction of freezing tolerance appears to require protein synthesis. Exposure of cells to salt shock (300 mM NaCl for 45 min) induced stress protein synthesis and the accumulation of glycerol, responses analogous to induction of hsp synthesis and trehalose accumulation in cells exposed to heat shock. Cells salt-shocked in the absence of cycloheximide showed a similar pattern of induced stress tolerance as with heat, with increased tolerance of heat, salt and freezing. Cells salt-shocked in the presence of cycloheximide continued to show induced heat and salt tolerance, but freezing tolerance could not be induced. These results lend support to the hypothesis that hsp synthesis is not essential for induced tolerance of some forms of stress and that accumulated solutes such as trehalose or glycerol may contribute to induced stress tolerance.
منابع مشابه
The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6.
Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradiol-dependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidopsis (Arabidopsis thaliana). Estradiol induction of HSFA4A in transgenic plants decreases, while t...
متن کاملEffect of Heat-killed Saccharomyces cerevisiae on Growth Rate and Apoptosis in Colorectal Cancer Cells
Background and purpose: Colorectal cancer ( CRC ) is highly prevalent and conventional therapies are associated with side effects, therefore, application of novel complementary treatment such as probiotics (especially Saccharomyces cerevisiae) is necessary. The aim of this study was to investigate the effect of heat-killed form of S.cerevisiae on growing rate and apoptosis (expression levels of...
متن کاملStress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis.
Bacillus subtilis induced a set of general stress proteins in response to a salt or heat stress. Cells subjected to a mild heat stress showed a protective response which enabled them to survive otherwise lethal temperatures (e.g. 52 degrees C). In a similar way bacteria were enabled to survive toxic concentrations of NaCl by pretreatment with lower salt concentrations. A mild heat shock induced...
متن کاملInteraction of heat and salt shock in cultured tobacco cells.
Cultured tobacco cells (Nicotiana tabacum L. var Wisconsin-38) developed tolerance to otherwise nonpermissive 54 degrees C treatment when heat-shocked at 38 degrees C (2 h) but not at 42 degrees C. Heat-shocked cells (38 degrees C) exhibited little normal growth when the 54 degrees C stress came immediately after heat shock and normal growth when 54 degrees C stress was administered 8 hours aft...
متن کاملThe molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex.
The 70 kDa heat shock proteins (Hsp70s) are a ubiquitous class of molecular chaperones. The Ssbs of Saccharomyces cerevisiae are an abundant type of Hsp70 found associated with translating ribosomes. To understand better the function of Ssb in association with ribosomes, the Ssb-ribosome interaction was characterized. Incorporation of the aminoacyl-tRNA analog puromycin by translating ribosomes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 141 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1995